Hardness of approximating the Minimum Solutions of Linear Diophantine Equations
نویسندگان
چکیده
منابع مشابه
Hardness of Approximating the Minimum Distance of a Linear Code
We show that the minimum distance of a linear code (or equivalently, the weight of the lightest codeword) is not approximable to within any constant factor in random polynomial time (RP), unless NP equals RP. Under the stronger assumption that NP is not contained in RQP (random quasi-polynomial time), we show that the minimum distance is not approximable to within the factor 2log(1 ) n, for any...
متن کاملSmall solutions of linear Diophantine equations
Let Ax = B be a system of m x n linear equations with integer coefficients. Assume the rows of A are linearly independent and denote by X (respectively Y) the maximum of the absolute values of the m x m minors of the matrix A (the augmented matrix (A, B)). If the system has a solution in nonnegative integers, it is proved that the system has a solution X = (xi) in nonnegative integers with xi <...
متن کاملApproximating Minimum Unsatis ability of Linear Equations
We consider the following optimization problem: given a system of m linear equations in n variables over a certain eld, a feasible solution is any assignment of values to the variables, and the minimized objective function is the number of equations that are not satissed. For the case of the nite eld GFF2], this problem is also known as the Nearest Codeword problem. In this note we show that fo...
متن کاملSparse Solutions of Linear Diophantine Equations
We present structural results on solutions to the Diophantine system Ay = b, y ∈ Z ≥0 with the smallest number of non-zero entries. Our tools are algebraic and number theoretic in nature and include Siegel’s Lemma, generating functions, and commutative algebra. These results have some interesting consequences in discrete optimization.
متن کاملOptical solutions for linear Diophantine equations
Determining whether a Diophantine equation has a solution or not is the most important challenge in solving this type of problems. In this paper a special computational device which uses light rays is proposed to answer this question, namely check the existence of nonnegative solutions for linear Diophantine equations. The way of representation for this device is similar to an directed graph, h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2007
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2006.12.023